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Abstract 
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Estimation of an acoustic wave velocity in the ocean and its utilization 

to improve object localization are studied here. 

Time delay and/or Doppler shift are measured by the vertically deployed 

sensors in two-dimensional systems.  Various sensor configurations (up to 

three sensors) are considered.  The information rate grows very fast when the 

measurement equation includes Doppler shift (IDIP, 2D1P).  Ihe system is 

totally unobservable with one sensor (ID), but the system is observable when 

two or three are employed.  Three-sensor, two-delay, one Doppler (2D1P) meas- 

urement gives the strongest observability. 

Several variations of Extended Kalman Filter (EKF) algorithms are tried. 

Approximated expression of the measurement equation with three sensors 

(2D1P) shows the best velocity estimation performance. 

With this estimated sound velocity, target range is compared with the 

nonestimated case.  As the measurement noise level increases, tracking per- 

formance of the estimated case becomes superior to the nonestimated case. 
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1.0  INTRODUCTION 

The object here is to study recursive estimation of sound velocity in sea 

water and its use in improved object localization.  It is well known that 

sound velocity can vary quite significantly as a function of depth, salinity, 

temperature and weather - especially in coastal inlets.  Sound velocity in 

seawater is very significant to ascertain the distance between two points 

which is obtained by just multiplying the time delay between them.  Practical- 

ly, two devices— a velocity meter and bathythermograph (XBT), are commonly 

used for finding the velocity of the sound propagation in the water. 

In [1], indirect measurement of the average velocity is studied by 

searching for the ray path which may be experienced with measured time delay 

betweent two points.  Velocity at a specific layered depth is stored in compu- 

ter memory for reference. 

In this paper, an attempt is made to estimate sound velocity by using the 

Extended Kalman Filter (EKF) algorithm and its variations with various meas- 

urement configurations.  By adding more sensors, up to three, observability of 

the system is improved. 

Since this observability for highly nonlinear measurement equations has 

not been solved, the equations are first linearized and then the information 

matrix and information-rate matrix are obtained.  Tests of the singularity of 

the information matrix shows that three sensors with three measurements (two 

delays, one Doppler) makes the system fully observable after the first meas- 

urement data arrived for the two-dimensional tracking system.  Time propa- 

gation of the eigenvalue of the information - rate matrix, also shows that 

two-delay, one-Doppler measurement, gives the fastest learning about the 

system.  Here, the sensor deplojmient is assimied to be vertical in depth. 



since the system equations are linear and the measurement equations are 

nonlinear with discrete observation, a discrete-type EKF with Gaussian se- 

quence noises in both system and measurement is simulated. 



2.0  SENSOR CONFIGURATION AND MEASUREMENT 

For good measurement and system observability, sensor configuration is 

very important.  Even with the same number of sensors and the same deployment 

structures, different quantities can be measured.  We can measure absolute 

time delay or time delay difference of two sensors, Doppler or Doppler differ- 

ence, or any combination thereof. 

Each of these measurement policies provide different information about 

system states due to the different degree of observability, but also, it is 

desired to know the minimum number of sensors which gives just enough informa- 

tion to estimate certain state variables.  Here, several alternatives of 

sensor and target configurations, when the target moves with constant velocity 

along the ocean surface are considered. 

Figure 1 shows sensor and target configuration for up to three sensors in 

a straight vertical array. 

In the one-sensor case, only absolute time delay or absolute Doppler 

shift between T and S2 can be measured.  Here T and S2 need to be synchronized 

to observe those quantities, i.e., effective for active SONAR. Another prob- 

lem here is poor observation of state; actually the system was unobservable 

with absolute time delay measurement during the first five minutes of the 

observation period. 

The two-sensor case is much better, i.e., either absolute quantities or 

comparative difference of delay or Doppler can be measured.  Also, active or 

passive systems may be used.  Another advantage of this configuration is the 

magnitude of observed quantities.  When target T approaches the sensor array, 

closer and closer, the actual magnitude of the comparative delay t,^ or 

Doppler f^2 becomes larger and larger.  Ttiis is because sensors s., S2 are 
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located below the target vertically.  But when the target locates between the 

sensors, then the measured quantities t^2» ^12 ™^y ^^ "^^^y  small thus result- 

ing in poor observation.  If T locates exactly halfway between the two sensors 

the t.|^2» ^12 ^°'il'i ^^ identically zero during such time, so that an unobserva- 

ble system results, again.  Even so, it will be seen that the above cases may 

not be fully observable with t,2 and f,2 measurements. 

So, in the third figure, one more sensor So is added at the surface 

plane.  With this deployment several possible measurements are considered as 

follows: 

a) Two  delay differences t,2> '^IT; 

b) Three delay differences t,2. t,,, t2o; 

c) Two delay differences tn, t,,   j    T>  1   „-i:i: ^ 12'  13; and one Doppler difference f,2. 

In this three-sensor system, observability is improved much compared to 

the first two cases.  But Cases a and b exhibit somewhat poor observability 

during the first several observation periods.  However, with Case c the system 

is fully observable after the first measured data arrived and the observabili- 

ty is very strong compared to the first two cases.  Consequently, Case c is 

chosen for the measurement equation in the simulation of the two-dimensional 

system shown. 



3.0  SYSTEM MODEL 

In a two-dimensional coordinate system, at least four state variables are 

required to describe the motion of the point target, i.e., target position and 

its velocity in each coordinate.  To involve the acoustic velocity in the 

system model, consider the velocity along the direct path from the source 

(target) to the sensors as another state variable.  But to reduce the number 

of state variables, assume the surface acoustic velocity Co is a known con- 

stant value for the three-sensor case.  By assuming the origin is at s^, 

define the state variables as follows: 

x-^  is target position in x-direction 

X2 is target velocity in x-direction 

x^ is target position in y-direction 

x^ is target velocity in y-direction 

x^ is C^   (acoustic wave velocity in R,) 

Xg is C2 (acoustic wave velocity in R2) 

With the above definition, the discrete type system equation can be 

written as 

c(k+ 1) = 

1 AT 0 0 0 0 

0 1 0 0 0 0 

0 0 1 AT 0 0 

0 0 0 1 0 0 

0 0 0 0 1 0 

.0 0 0 0 0 1 

x(k) + W(k) , 



where x(0) = XQ, AT is the sampling interval, and W(k) is a white Gaussian 

noise sequence with covariance 

Q(k) = E[W(k) W(k)T] 

y 

The basic measuring quantities are time delay difference t.. between 

sensors and Doppler frequency difference f^. from carrier frequency f = 3500 

Hz, which seems widely used in practical SONAR systems.  So, for example, when 

three sensors are used in the measurement system with two delays and one 

Doppler (2D1P), the observation equation becomes 

y(k) = delay difference between s,   and s^ 

Doppler differnce between s, and s^ 

Delay difference between s, and s. 

{measurement noise} 

t^3(k) 

+ V(k) , 
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R^Ck)       R^(k) 

R^Ck)       R^(k) 

R2(k)       R^Ck) 

+ V(k) 

r 2 ^   2a/2 
^^^(^^2)')'^' 

5cK^+ V4^       ^c^^^2  - (^3 - ^iK^ 
(   2 ^    l.l/l 

r   2  ^      2^l/2 
1^1 + X3J X 

X5(x^   +  (X3   -  z^)^) 2T172 

1 

+ v(k)  , 

=       h(x(k))   + V(k)   , 

Where V(k)   Is assumed  independent with x(0)   and W(k)  white Gaussian noise 

with covariance 

R(k)   = E[v(k)  VCk)"^]   , 

'12 

12 

^t  2 
13 
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The other cases of observation equations have a similar form, but measure 

different quantities.  For comparison of observability of the system and 

filtering performance possible observation equations are given below. 

1) One-Sensor ( 1). of Fig. 1); IS(ID) 

h(x(k)) = one absolute time delay between T and S2 

= R(k)/C(k) 

2) Two-Sensor  (   2).  of  Fig.   1);   2s(lDlP), 

h(x(k))   = 

t^^W 

f,,W 

3)  Three-Sensor ( 3) of Fig. 1) 

3s(2D) 

h(x(k))  = 
t^3(k) 

3s(3D) 
\,W 

KxCk)) = t^3(k) 

_t23(k) 

In any case, the system equations are simple linear ones, but the obser- 

vation equations are nonlinear. 
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4.0  OBSERVABILITY OF THE SYSTEM 

Generally, increased system observability improves the quality of an 

estimate and speeds up the convergence of estimations.  Also, some redundant 

observation is desired to reduce adverse effects of measurement errors. 

Since the system has special nonlinear structure with any considered 

measurement equations, it is necessary to know which measuring policy is the 

"best" one.  The meaning of "best" here is that which requires a minimum 

number of sensors to maintain an observable system. 

Many investigations have been conducted of nonlinear-system observabil- 

ity. MDst of them, for example, Kostyukovskii [8,9], Tarn, et al. [10], 

Griffith [U], Fitts [12], Fujisawa [13] and Schoenwandt [14], tried to find a 

method to check if the observed or measured data is enough to decide every 

initial state x(0) uniquely, i.e., somehow to check unique connectedness of 

measurement and system state using a nonlinear mapping concept or by extending 

the well known rank test.  Unfortunately, both of the above concepts are very 

difficult to apply directly here because the measurement equations involve 

complicated nonlinear expressions in their denominator. 

Here, the system is modified and then the observability matrix testing 

concepts are applied.  This method is suggested by Jazwinski [5] when system 

noises are small. 

First, the measurement equation is linearized about the most recently 

estimated value x[k], i.e., 

y(k + 1) = h(x(k)) + v(k) 

« H(x(k))x(k) + V(k) 
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Then, with the system equation 

x(k + 1) = A(k + 1, k)x(k) + B(k)W(k), 

the information matrix I(k,l) is 

I(k, 1) ^ I     A^(i, k)H^[x(i)]R(i)~^H(x(i))A(i, k) 
i=l 

This is a completely analogous definition of the observability matrix for the 

continuous dynamic system with 

t 

l[t,tQ) ^    /  A'^(T,t)H^(x(T))R(T)"^H(x(T))A(T.t)dt  . 

After some algebra, the iterative algorithm to compute time propagation of 

I(k +1, 1) becomes 

I(k +1,1)= A'''[k, k + 1] I(k,l) A(k, k + 1) 

+ H'^(i(k + l))R"^(k+ 1] H(x(k+ 1)) , 

1(1, 1) = 0 . 

Then the discrete system is said to be completely observable with respect to 

observations 

^^1' ^2'   yk> 



I . 
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if, and only if the infoirmation matrix !(•) is positive definite, i.e., 

I(k, 1) > 0, for some k > 1. 

The second term of !(•), i.e., 

HT(x(k))R"^H(x(k)) 

is known as the information-rate matrix which shows how fast the filter ob- 

tains information from the measurement equation. 

Before positive definiteness of !(•) is checked, i.e., the observability 

of the system, consider the eigenvalue of this information rate matrix.  Of 

course, the larger its eigenvalue implies the faster the observation gains 

information or learns about the state.  Table 1 shows the eigenvalue (X6) 

corresponding to x^ of this matrix for different measurement equations consi- 

dered before.  This shows that the information rate of the three-sensor, two- 

delay measurement (3s(2D)) and three-sensor, three-delay (3s(3D)) are almost 

the same.  And 2s(lDlP) and 3s(2DlP), also, grow at almost the same rate in 

spite of the different number of sensors.  The magnitude differs tremendously, 

i.e., the information rate in cases with Doppler measurements is much larger 

(almost 200 times).  So, it is suggested that Doppler measurements are very 

useful here.  System Is(ID) is far inferior to the other measurement configu- 

ration. 

Aaother interesting fact is that when only time delay is measured cor- 

responding to the first three columns of Table 1, the information rate is 

decreasing with increasing time.  On the other hand, when Doppler as well as 
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Table 1.  Eigenvalue (Xg) of Information Bate Matrix (H^ ^H] 

Meas. 
Time Is(lD)     3s(2D)     3s(3D)     2s(lDlP)    3s(2DlP) 

t = 1 min. .00014      .060      .064        2.6        2.7 

.00012      .076      .080        3.9        3.8 

.00010      .059      .062        5.5        5.4 

.00008      .044      .047        8.4        8.3 

.00007      .035      .038        12.2        12.3 
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delay is measured, the rate increases with time.  This also suggests that 

Doppler must be a measured quantity. 

Next the observability of the above measurement equations are compared by 

computing the singularity of the information matrix I(k, 1).  Table 2 shows 

this result.  As expected, with one-sensor, one-delay (Is(lD)) measurement, 

the system is unobservable during the whole five minutes of observation.  In 

the next three cases, 2s(lDlP), 3s(2D), 3s(3D), the system is observable after 

0.5 min. from the beginning of estimation which corresponds to after the 

second measured data arrived.  The magnitudes, determinants of the information 

matrix, are very small here, but increasing with time.  At the final time t = 

5 min. the strength of the observability is much different depending on the 

measurement policy.  However, most strong observability occurs from the last 

measurement case, 3s(2DlP).  Here, the system is observable from just after 

the first measurement data is done.  And, also, the magnitude is much larger 

than the other cases.  At the final time, the strength of nonsingularity is 

almost 20 times larger than that of 3s(3D). 

Within the limited measurement systems considered here, the comparison 

shows that the observability of the system is a strong function of the number 

of sensors as would be expected.  For system observability from within one or 

two measurements, at least three sensors are needed.  If we employ the 

3s(2DlP) policy, the system is completely observable from the first measure- 

ment on. 
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Table  2.     Observability  (Singularity of   Information Matrix) 

Msas. 
Time Is(lD) 3s(2D)      3s(3D)      2s(lDlP)    3s(2DlP) 

0 min. 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

A A A A 

V V V 
4.88x10 2^  8.13xl0~22   3.8x10"^^ 

V     3.73x10"^   7.63x10"^    6.3x10""^ 

I 
5.33x10 -17 

Unobservable 3.98x10"^^  2.56x10 ^^   2.0x10"^'^    1.08x10"^ 

1.24x10 -5 
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5.0  EKF AND ITS VARIATIONS 

Here, the system equation is linear in the state, but the measurement 

equation is not, so the usual Kalman-Bucy filter cannot be directly applied. 

Hence, a discrete-type EKF algorithm is studied.  Its recursive computational 

steps can be described as follows: 

1) Given x(k, k), P(k,k) from the previous estimation with initial 

values x(0, 0), P(0, 0). 

2) x(k + 1, k) = A(k + 1, k)x(k, k), predicted state estimation. 

3) P(k + 1, k) = A(k + 1, k)P(k, k)A^(k), predicted error covariance. 

4) K(k + 1) = P(k + 1, k)H^(k + l)[H(k + l)P(k + 1, k)H^(k + 1) 

+ R(k)]~^ , gain matrix. 

5) x(k + 1, k + 1) = x(k + 1, k) + K (k + l)[y(k + 1) 

- h[x[k + 1, k])], new state estimation. 

6) P(k + 1, k + 1) = [I - K(k + l)H(k + l)]p(k + 1, k), 

or  =  [I - K(k +   l)H(k +   l)]p(k +  1,   k)[l - K(k +   l)H(k +   1)]^ 

+ K(k +  l)R(k)K-^(k +  1),  new error covariance matrix. 

7) Repeat  from  Step   1)  with k +  1 > k, 

where      H(k +  1)   = -^^^1   x = x(k +  1,  k) . ox      ' 

The EKF is modified for the simulation purpose as below.  This was done 

to be more useful or to have better characteristics for the stated problem. 

a)   EKF with Exact Expression of H Matrix. 

From the results of the previous section, it is seen that the system is 

fully observable with 3s(2DlP) measurements.  Consequently, several EKF varia- 

tions for this measurement equation are compared with 
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h(x(k))  = 

!2    h_ 

f JX^X^   +  X3XJ f Jx^x^   -   (X3   -   z^jx^ 

^^2 ^5^1 

R„ 

X, 

H(k +  1)   = -glx = x(k +  1,  k)   , 

^6^2 Vl' '   V 
^3-^2 

H 
-f  x, f  X, 

c  1   .     c  1 

1 
-R 

21 
'   ^1^5 V6' 

^^2      S 

where 

H 
23 

' ^2^5 ^1^5 

2' 2 
^5 ^ 

^25'       ^26' 

V2' 
-R, 

2' 

—'      X  = 

x[k+l,k] 

H, 21 

H, 23 

c^x^-R^ 

fcVj_ 
V^2 

2                                              2 
= -f  ^](1 -] + f  f^lfl-lfi Ll   -    g 1   3  4 c  1^   3 2^   4 

^ 2       R 
^6^2 X3RJ 

!3.   !c%^ 

RJ^     ^^1 
(^3-^2) 

Rt 
-)   -f 

^1^2^"2-^3^     ^c^l^2^3 

^5^1 ^^2 
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H, 25 

^26 

^c^V"! ^iS^-i-^H X, 

^^5 

^c^^2 

\' 6 

Since the H matrix involves high-order multiplication and division, a 

little error in estimation x(k + 1, kj may cause a large computational error. 

Ihis is further brought out by simulation.  Therefore, a simplified alternate 

approximation of H was sought. 

b)   EKF with Simplified H Matrix. 

Due to the complicated expression of the H matrix and insignificance of 

some terms in it, consider a simplified version of H without any appreciable 

deterioration of filter performance. 

From the actual values of estimation used here 

^   ^ « /* >\   A 

2 • 

This is due to our special system structure, i.e., Xj^ is larger value on the 

Other hand, x^ is close to zero. So the measurement matrix h(x) is approxi- 

mated by 

h(x) = 

X, 

^c^l^2 

^^2 

^c^l^2 
XgR^ 
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Now the H matrix with this h has fairly good form which may involve less 

computational error. 

With the approximated H, very good state estimation results, as can be 

seen from Figure 2. 

c)  EKF with Artificial Measurement Error Term. 

Denham [4] indicated that when measurements are nonlinear and nonlinear- 

ity is comparable to measurement noise, filter performance can be improved by 

adding an artificial error covariance term R„_<. as 

ILj, = R + R^rt' 

i.e., artificially increase the measurement-error covariance, but its effect 

is obvious from the expression 

x(k + 1, k + 1) = A(k + 1, k)x(k + 1, k] + K[y(k + 1) - h(x)] , 

with 

Tf upuT 1 p 1-1 gain K = PH^[HPH^ + R^] 

By increasing Rp, the gain K is decreased.  The limiting case of the above is 

Rm > ", K ->■ 0, 
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then 

x(k + 1, k + l) = A(k + 1, k)x(k + 1, k) ; 

i.e., in the extreme limit nothing is learned from the measurement. 

d)  EKF with Local Iterations 

With this algorithm the predicted state x(k + 1, k) is updated before 

calculating a new estimation x(k + 1, k + l], i.e., iterates several more 

times (Step 4 and 5 in the original EKF) between measurements.  See Denham [4] 

and Jazwinski [5]. 

Then the i-th iteration of N total iterations becomes 

^i+1 = k^ + 1, k] + K(n. )[y(k + 1) - h(n.) - H(n. )(x(k + l, k) - n. ] . 

where 

I    - .". 

nj^ = x(k + 1, k) , and 

T\^  = x(k + 1, k + l) , for £ = 2, ..., N. 

This iteration repeats until improvement 

(x(k+ 1, k) - n.; 
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is small enough.  At every iteration K(n^) , K^i) ^^^ K'^±) ^^^  recalculated, 

thus at the £-th iteration, the new covariance P(k + 1, k + 1) is computed and 

then waits for new measurement data, and so on. 

This algorithm, obviously, has some advantages such as: 
/ 

1) Effective use of processor or computer between sampling intervals, 

2) Improving the state estimation by improving the reference state. 

Unfortunately, there are several disadvantages such as: 

a) Only useful when unobservable states are linear, 

b) Accumulation of truncated error due to repeated iterations, and 

c) Computational error may be accumulated, also. 

Here, it does not seem to be useful as can be seen in Figure 2.  This may 

be due to the particular nonlinear structure of the measurement equation, 

h(x), which may nullify the anticipated advantages. 
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6.0 RESULTS 

For comparison of different measurements, the following parameters are 

chosen: 

AT = 15 sec. (measurement interval). 

■'# ■ 

x(0) = initial condition of state variables. 

X (O) = 10,000 m 

^2^^^ ~ "15.433 m/s (30 knots; approaching to the sensor) 

X (0) = 4000 m 

^(0) = 0 m/s 

X5[0) = 1500 m/s 

\l') = 1500 m/s 

where 

+ a^ x  N(0, 1), i = 1 6. 

'l = o^ =  100 m (1% of initial value of x,) 

'2 " Sx " °*15 m/s (1%) 

03 = ay = 40 m (1%) 
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Oc  = a„    =  7.5 m/s (0.5%) 

^f, " '^r    = 7.5 m/s (0.5%). 
2 

The measurement noise assimed was zero mean white Gaussian with vari- 

ances. 

a^      =  0.038 sec. (10% of the first measurement) 
12 

Or:      = 0.1875 Hz (10%) 
12 

a = 0.052 (10%), 
13 

and 

fj, = 3500 Hz (carrier frequency of modulation) , 

Zj = 2000 m (intersensor distance of s, and s^), 

Z2 = 2000 m (intersensor distance of s, and s^). 

With the above parameters, 15 runs were averaged.  Figure 3 shows the 

sound speed estimation along the range R2 for the different measurement struc- 

tures.  Qearly, for the one- or two-sensor cases, the filtering function is 

not so good compared to the three-sensor case. The  reason for the large bias 

from the true trajectory may be due to the lack of observability.  Actually, 

these two cases showed poor observability as seen in Table 2 previously. 

For three-sensor measurements, it is difficult to compare performance, 

but error covariances of this case show that the two-delay, one-Doppler meas- 



o 
•H 

a 

Si 

CD tH 
O 
ft CH 
CQ- O 

C 
o 
CO 

o 

c 
o 
m 

•H 

a 
ft 
s 
o 
o 

0 
u 

•H 

0) 

\ 

>, CO 
i~ s- 
o O 
4J 10 
u c 
0) CL) ^■■■^ 

•"-5 00 00 
CO ^ -1^ jH-Hi. ^■^ 

s- ro CO C>0 C\J 00 +-> ^.^ -    - 
CO CO T—1 

<u o. ^..^ %_«« o. ^_^ 
3 r-» .—1 
S- Q o Q Q o 

1— CVJ CO CVJ. »—1 1-H 

<  4c ■<< P 

\ 

w 

m     ^ 

¥ 

e;3 

® 

f 

^ 

27 

CD 
O 

Tin 

CD 

o 
o 

--T 

I in 

; CD.. 

C\i  '- 

o 
in 

o 
o 

C3 

1 'O 

1   !  !  1 i ' I f 

i  CD 
1      < 1  1 !  —1—  1   1   .  t-CD 

CD 
E3 

C3 
CIi 

CD 
CD 

CD 
CD 

CD 
o 

CD 
CD 

=3 
CD 

CD C3 
CD 

CD 
CD 

C3 CC3 

o CD 
CD 

C3 L|2 CD UT 
9 

C3 in CD ^'^ 'SI CD in c; in :3 
N fn n W IN' T-t t-1 CD Cl cn CD a 

-T ID LD •S) m LT m m in L" rr T ^ 

CS/W) [0013A   Gwncs 



28 

urement system (2D1P) has the smallest value at the final time.  This is shown 

in Figure 4 and Table 3.  For 3s(2D) and 3s(3D) measurements, the variances 

grow slowly, but for 3s(2DlP) they decrease steadily.  So, it is concluded 

that for the two-dimensional system observability and good sound speed estima- 

tion requires at least three sensors.  Further for best observability and best 

filtering performance, Doppler measurement which is combined with delay meas- 

urement is essential. 

Next, improvement of the target range is examined by comparing "without 

sound velocity estimation" and "with estimation."  For convenience, choose 

range R^ which is a direct path from target to sensor at the sea floor (Figure 

1).  Since it is expected that the effects of the estimation or filtering 

effect will be most clear when the measurement noise level is high, the ori- 

ginal 10% noise level is increased to 20%.  The system noise level, also, is 

increased to 5% from its 1% level.  Figure 5 shows this comparison for an 

average of 15 runs.  Clearly, after about two minutes, the estimated range 

trajectory with 2D1P measurement policy shows smoother and more accurate 

trajectory than the one without estimated acoustic velocity. 

To show more detailed effects of estimation as a function of measurement 

noise level. Figures 6 and 7 are provided.  Noise levels chosen here are 5%, 

10%, and 20%.  When the noise level is low, for example 5%, the difference of 

range tracking performance is not so significant.  However, when noise levels 

increase, the differences of performance become more significant. 
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Table 3.  Error Covariance of 

Me as. 

Time Is(lD) 2s(lDlP) 3s(2D) 3s(3D) 3s(2DlP) 

0 min. 25000 25000 25000 25000 25000 

0.5 24880 12190 4420 3500 508 

1.0 24750 11830 280 300 508 

1.5 24460 11590 295 205 451 

2.0 24050 11360 286 230 411 

2.5 23570 11190 295 257 397 

3.0 23160 10950 325 285 393 

3.5 22840 10660 350 310 386 

4.0 22550 10380 376 335 374 

4.5 22400 10170 400 360 363 

5.0 22320 9710 426 386 352 
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7-0  CONCLUSIONS AND FURTHER RESEARCH 

Acoustic wave velocity estimation in the ocean as a means of estimating 

other target information - target location and its velocity is investigated in 

this report. 

Since the ocean medium is inhomogeneous in depth and in the horizontal 

plane, wave propagation varies according to the many factors.  >bst important 

factors are temperature, depth, salinity and range.  Here, the sound velocity 

is considered as a state variable, which can be estimated from time delay 

and/or Doppler shift measurements. 

The number of sensors and deployment configurations affect the observa- 

bility of the system.  The information rate grows very fast when the measure- 

ment includes Doppler shift (2s(lDlP), 3s(2DlP)).  ihe observability test of 

the nonlinear system shows that when only one sensor is used, the system is 

totally unobservable during the first five-minute observing period.  When two 

or three sensors are used, the system is observable after one or two measure- 

ments, but with different degrees of observability, depending on the measure- 

ment policy.  Observability of the system with 3s(2DlP) is stronger than any 

other measurement policy. 

The system model is linear but the measurement equation is highly non- 

linear, so the measurement equation is linearized and the EKF is utilized, 

several variations of the EKF were tried.  Since the measurement equation is 

so complicated, the approximated expression with no iteration shows the best 

estimation performance.  With this scheme, the sound speed along the range of 

the system was estimated.  The 3s(2DlP) measurement shows the best estimation 

performance as expected.  Actual estimation error with this policy is within ± 

5 m/s of 1500 m/s, the assumed true velocity, but with one or two sensors, the 

estimation error was larger than 25 m/s within a observed period. 
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With the 2D1P measurement equation and acoustic velocity estimation, the 

performance for tracking a target is compared with the nonestimation case.  As 

the noise level increases, tracking performance of the estimated case becomes 

superior to the nonestimated case. 

The assumption made here is that the acoustic wave travels through a 

direct path between target and sensors.  In actual inhomogeneous ocean medi- 

ums, however, this is not true.  The wave propagating along the several modes 

depends on the source depth.  By applying ray theory or the well known Snell's 

law, sound velocity can be estimated more accurately.  Including these 

theories in the estimation algorithm does not present any great difficulty. 

However, this is the topic for future research.  Then, with this more exact 

sound speed, more accurate target position and its velocity estimates may be 

computed which is the final objective of this research. 
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